Characterization of the aging process of smoke observed over Austria using organic carbon mixing ratio

Camelia Talianu

Institute of Meteorology, University of Natural Resources and Life Sciences, Vienna, Austria, National Institute of R&D for Optoelectronics, Magurele, Romania, camelia.talianu@boku.ac.at

INTRODUCTION

The smoke from anthropogenic and natural sources consists mainly of a mixture of sulphates, black carbon (BC) and organic carbon (OC) [1]. In the atmosphere, most of the smoke is in the optically active accumulation mode. In this paper, methods to characterize the smoke aging process based on organic carbon mixing ratio are

METHODOLOGY

The study has been performed for Vienna (48.21°N, 16.36°E), using MACCIII reanalysis data at 700 hPa level from March – May 2014 for OC, BC and Sulphate. Seven cases of smoke were identified using a back-trajectories analysis based on Flexpart aerosol dispersion model [3] and linear particles depolarization (LPD). The smoke is considered to have a small depolarization (less than 5%). The optical properties for smoke were calculated using T-Matrix method for two wavelengths: 350 nm and 550 nm. The aging process was determined using two methods: ratio of OC mixing ratio to BC mixing ratio (OC/BC),

respectively ratio of OC mixing ratio to total mixing ratio (OC/T).

In order to estimate the aerosol ages, the result was compared with the ratio (RLR) of lidar ratio at 550 nm to lidar ratio at 350 nm [4]. RLR < 1 means fresh smoke and RLR >= 1 means aged smoke. The age of smoke is proportional to the growth of the RLR.

52°N -

SELECTED CASES

			Cases of smc	oke over Vier	nna in Sprin	g 2014		
Aerosols at 700 hPa		Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7
80	Date	22 March	02 April	04 April	08 April	14 April	29 April	07 May
60	Time [UTC]	00:00	12:00	18:00	18:00	06:00	18:00	06:00
50	AOD	0.31	0.83	0.56	0.74	0.32	0.35	0.44
30	LPD350 [%]	3.9	4.6	0.1	4.8	4.3	2.5	4.7
20	LPD550 [%]	1.5	1.7	<0.1	2.8	2.8	1.7	2.6
	Source	Austria	North Africa	North America	North America	West Europe	NE Europe	North America
2014-03-22 00:00 2014-04-02 12:00 2014-04-04 18:00 2014-04-08 18:00 2014-04-14 06:00 2014-04-29 18:00 2014-05-07 06:00 Dust [ug/mc] Smoke[ug/mc]	Age	1 Days	4-5 Days	6 Days	4-5 Day	2 Days	2 - 3 Days	> 6 Day

RESULTS

Backward trajectory for case 1	Backward trajectory for case 2	Backward trajectory for case 4	Aerosols properties at 50% relative humidity
Backward trajectories ending at 20140322 00:00 UTC	Backward trajectories ending at 20140402 12:00 UTC	Backward trajectories ending at 20140408 18:00 UTC	Case LR350 [sr] LR550 [sr] Radius [µm] AE
			1 42 ± 9 48 ± 10 0.38 ± 0.09 1.4 ± 0.2

1.Two methods to characterize the smoke aging process based on mixing ratio were presented: OC/BC and OC/T

2. The results shows that the age of aerosols liniar increases with increasing content of OC.

3.We obtained a good correlation between RLR method and both methods:

> 0.91 corelation factor for OC/BC method

> 0.87 corelation factor for OC/T method

REFERENCES

[1] Solomon, F., Giorgi, F., and Liousse, C. (2006) *Tellus*, 58B, 51–72 [2] MACC Project, http://www.gmes-atmosphere.eu/ [3] Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G. (2005) Atmos. Chem. Phys., 5, 2461-2474 [4] Nicolae, D., Nemuc, A., Müller, D., Talianu, C., Vasilescu, J., Belegante L., and Kolgotin, A. (2013), J. Geophys. Res., 118, 2956–2965 [5] Koepke, P., M. Hess, I. Schult, and E.P. Shettle (1997), Report No. 243, Max-Planck-Institut für

Meteorologie, Hamburg

ACKNOWLEDGMENTS

This work is supported by Austrian Science Fund (FWF), project number M 2031 Meitner-Programm

[≬] Met

EAC 2017, Zürich, Switzerland, August 27 – September 1, 2017

1 May 6:00

Der Wissenschaftsfonds.